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Abstract
I discuss Haldane’s concept of generalized exclusion statistics (1991 Phys.
Rev. Lett. 67 937) and show that it leads to inconsistencies in the calculation
of the particle distribution that maximizes the partition function. These
inconsistencies appear when mutual exclusion statistics is manifested between
different subspecies of particles in the system. In order to eliminate these
inconsistencies, I introduce new mutual exclusion statistics parameters, which
are proportional to the dimension of the Hilbert subspace on which they
act. These new definitions lead to properly defined particle distributions and
thermodynamic properties. In another paper (Preprint 0710.0728), I show that
the fractional exclusion statistics manifested in general systems with interaction
have these, physically consistent, statistics parameters.

PACS numbers: 05.30.Pr, 05.30.−d, 05.90.+m

1. Introduction

Haldane’s concept of the fractional exclusion statistics (FES) [1] have been applied to the
study of many types of physical systems, revealing interesting properties. For example, it has
been applied to strongly interacting systems, such as the Tomonaga–Luttinger model [2–5],
Colagero–Sutherland model [6–10], fractional quantum Hall effect [11–13], or to interacting
particles in one- or two-dimensional systems, described in the mean field approximation
[14–17]. The statistical properties of FES systems have been calculated mainly by Isakov
[18] and Wu [19], while Iguchi extended the Fermi liquid model to the model of a FES liquid
[20, 21]; the microscopic reason for the manifestation of FES have also been discussed by
several authors [10, 12–15, 17, 22].

Although the concept received so much attention and has been applied in general to many
types of systems, I will show here that when mutual exclusion statistics is manifested between
different subspecies of particles in the system, FES leads to thermodynamic inconsistencies.
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I will also show that these inconsistencies can be corrected by a redefinition of the exclusion
statistics parameters.

In a related paper, I showed that the fractional exclusion statistics appears in general
systems of interacting particles and the statistics parameters indeed obey the rules conjectured
here [23].

2. Thermodynamic inconsistencies in FES

In this section I will prove using two model systems, that in FES systems the equilibrium
particle populations are ambiguously defined, if mutual statistics parameters are not zero. For
this, I will recalculate the partition function and the most-probable particle distribution in a
FES system, following the procedure used by Wu in [19].

Haldane defined the fractional exclusion statistics as acting on Hilbert spaces of finite
dimensions [1]. If we have only one such space, in which we put N ideal bosons
or fermions, then the number of microscopic configurations we have in the system is
Wb = (G + N − 1)!/[N !(G − 1)!] (for bosons) or Wf = G!/[N !(G − N)!] (for fermions).
The fractional exclusion statistics of parameter α is an interpolation between these two cases
and the number of configurations is W = [G+(N −1)(1−α)]!/{N ![G−αN −(1−α)]}—we
say that the addition of δN particles in the system reduces the number of available states in
the system by αδN [1, 19].

Now let us generalize the problem to the case when we have more than one Hilbert
space. The spaces are H0,H1, . . . , of dimensions G0,G1, . . . , and which contain N0, N1, . . . ,
particles. In this case we have the FES parameters αij , with i, j = 0, 1, . . . . Mutual exclusion
statistics is manifested between the spaces Hi and Hj (i �= j) if αij �= 0—we say that the
addition of δNj particles in the space Hj changes the number of available states in the space
Hi by −αij δNj . With these notations, the total number of configurations is [19]

W =
∏

i

[
Gi + Ni − 1 − ∑

j αij (Nj − δij )
]
!

Ni!
[
Gi − 1 − ∑

j αij (Nj − δij )
]
!

. (1)

Having the number of microscopic configurations (1), if we assign the energy εi and the
chemical potential µi to the states in the space i, we can calculate the grandcanonical partition
function, Z [19],

Z =
∑
{Ni }

W({Ni}) exp

[∑
i

βNi(µi − εi)

]
, (2)

and the total energy of the system in the given configuration, E = ∑
i Niεi—we use the

notation β = 1/kBT , where T is the temperature of the system.
The most-probable configuration, {Ni}, is obtained by maximizing Z with respect to the

set {Ni}. If we introduce the notations ni ≡ Ni/Gi and βij ≡ αijGj/Gi , and assume that
for each i both Gi and Ni are sufficiently large, so that we can use the Stirling approximation
(ln Gi! ≈ Gi ln(Gi/e) and ln Ni! ≈ Ni ln(Ni/e)), the maximization procedure gives us the
system of equations:

ni eβ(εi−µi) =
[

1 +
∑

k

(δik − βik)nk

] ∏
j

[
1 − ∑

k βjknk

1 +
∑

k(δjk − βjk)nk

]αji

. (3)

The system (3) is solved easily if we denote wi ≡ n−1
i − ∑

k βiknk/ni . Using this
notation, (3) becomes
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(1 + wi)
∏
j

(
wj

1 + wj

)αji

= eβ(εi−µi) (4)

and ni s can be calculated from the new system,∑
j

(δijwj + βij )nj = 1. (5)

If the spaces i are fixed, equation (5) can be solved and the populations ni can be
determined. But in general, the spaces Hi can be changed by dividing or combining them
and, if the system has a proper thermodynamic behavior, such changes should not affect the
thermodynamic results. Unfortunately, this is not the case and I will show now by simple
examples that the particle distribution that maximizes the partition function depends on our
choice of subspaces Hi .

Let us assume that we have only two finite-dimensional Hilbert spaces, H0 and H1, of
dimensions G0 and G1, and the FES parameters α00, α11, α01 and α10. Then, equations (3)
and (4) reduce to systems of two equations and two unknowns as⎧⎪⎪⎨

⎪⎪⎩
(1 + w0)

(
w0

1 + w0

)α00
(

w1

1 + w1

)α10

= eβ(ε0−µ0)

(1 + w1)

(
w0

1 + w0

)α01
(

w1

1 + w1

)α11

= eβ(ε1−µ1)

(6)

and ⎧⎪⎪⎨
⎪⎪⎩

(w0 + α00)n0 + α01
G1

G0
n1 = 1

α10
G0

G1
n0 + (w1 + α11)n1 = 1,

(7)

respectively. Now let us further assume that the space H1 was obtained as a union of the two
smaller, disjoint subspaces, H1a and H1b, of dimensions G1a and G1b, respectively. Then,
instead of two Hilbert spaces and four exclusion statistics parameters that we started with, we
can also describe the system as consisting of three subspaces and nine statistics parameters.
From these nine, α00 remains unchanged, whereas α01a and α01b should be identical to α01.
A natural choice for the other six parameters is α1a1a = α1b1b ≡ α11, α1b0 = α1a0 = α10 and
α1a1b = α1b1a = 0. Obviously, we also have ε1a = ε1b = ε1 and µ1a = µ1b = µ1. In the new
configuration, the systems (4) and (5) become⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1 + w′
0)

(
w′

0

1 + w′
0

)α00
(

w1a

1 + w1a

)α10
(

w1b

1 + w1b

)α10

= eβ(ε0−µ0)

(1 + w1a)

(
w′

0

1 + w′
0

)α01
(

w1a

1 + w1a

)α11

= eβ(ε1−µ1)

(1 + w1b)

(
w′

0

1 + w′
0

)α01
(

w1b

1 + w1b

)α11

= eβ(ε1−µ1)

(8)

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(w′
0 + α00)n0 + α01

G1a

G0
n1a + α01

G1b

G0
n1b = 1

α10
G0

G1a

n0 + (w1a + α11)n1a = 1

α10
G0

G1b

n0 + (w1b + α11)n1b = 1.

(9)

The systems (6) and (7) should admit the same physical solution as the systems (8) and (9),
which is n1a = n1b = n1. If we also take, for the simplicity of the calculations,
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G1a = G1b = G1/2, then from the last two equations of (9) we get w1a = w1b and

α10n0G0/G1 + (w1a − w1)n1 = 0. (10)

Using w1a = w1b ≡ w′
1 into (8), we obtain the system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(1 + w′

0)

(
w′

0

1 + w′
0

)α00
(

w′
1

1 + w′
1

)2α10

= eβ(ε0−µ0)

(1 + w′
1)

(
w′

0

1 + w′
0

)α01
(

w′
1

1 + w′
1

)α11

= eβ(ε1−µ1).

(11)

Since the systems (6) and (11) are not identical, equations (11) and (10) (eventually combined
also with (6)) give three equations for the two unknowns, w′

0 and w′
1. The system of equations

is overdetermined and does not have solutions, unless the statistics parameters have some
special values. Such special values are, e.g., α10 = α01 = 0 (α01 = 0 would be necessary if
we would split the space H0 instead of H1).

2.1. Large systems

I will show now that the thermodynamic inconsistency of FES occurs also in systems of
infinite, quasi-continuous spectra. For this let us assign to the single-particle states the sets of
quantum numbers, k—the set k does not necessarily consists of wave-vector components, as
it usually does, but it may contain any quantum numbers. If the system is large enough, we
say that each of the subspaces Hi contains the set of single-particle states {k}i , which ‘fill-up’
a volume Vi in the space of the quantum numbers and we define the density of states, σk, so
that Gi = ∫

Vi
σk dk and Ni = ∫

Vi
nkσk dk. Then the parameters αij depend on the quantum

numbers {k}i and {k}j , so we shall change the subscripts and write in general, e.g. αkk′ . In
these new notations, the system (4) becomes

(1 + wk)
∏
k′

(
wk′

1 + wk′

)αk′k
= eβ(εk−µk) (12)

for any division of the total Hilbert space of the system into elementary volumes Vi , as long
as Gi and Ni (for any i) are large enough, so that we can apply the Stirling formula and the
maximization procedure presented above. Moreover, if we can choose all the volumes Vi so
that they are small enough to use the approximation Gi = σkVi and αij = αkk′ for any k in Vi

and k′ in Vj , equation (5) becomes∑
k′

[
δkk′wk′ + αkk′

σk′

σk
· Vk′

Vk

]
nk′ = 1, (13)

where we also changed the notation Vi into Vk and Vj into Vk′ . Now we observe directly
that while equations (12) contain only intensive parameters (i.e. which do not depend on the
volumes Vk involved), the values of the equilibrium particle populations (13) depend on our
arbitrary choice of volumes, so the thermodynamic quantities, which are the populations nk,
are not well defined.

3. Correction of the parameters

The reason for which the thermodynamics of FES systems is ambiguous is obvious from
the beginning. If we look, for example, at equation (3) and we imagine that we reduce the
dimension of one of the spaces, say of space i, by half, then since all the parameters βij

are proportional to Gj/Gi , this could cause a significant redistribution of all the occupation
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numbers (as we proved in concrete cases above). Since the population numbers should be
intensive parameters, it means that the system could not have thermodynamic limit.

Fortunately, as it was easy to observe the anomaly of FES, it is as easy to correct it. I shall
prove below that if the ‘trouble-making’ mutual exclusion statistics parameters are proportional
to the space on which they act, i.e. αij ∝ Gi , then the system admits a thermodynamic limit.
In [23] I analyzed the exclusion statistics that appears in general interacting systems and
showed that in the limit of a quasi-continuous density of states the mutual exclusion statistics
parameters indeed satisfy this property. To differentiate these new parameters from the ones
used above, I shall denote them by α̃kk′ . Therefore, the qualitatively new feature of the
parameters α̃kk′ is that for k �= k′, α̃kk′ is not a simple number, but it is proportional to the
dimension of the subspace Vk: α̃kk′ = GVkαkk′ ≡ σkVkαkk′ . If k = k′, the statistics parameters
are similar to the ones studied so far and we write α̃kk = αkk.

Let us now try to find the equilibrium configuration with these new statistics parameters
and see if this has a thermodynamic limit. To do this, we first have to write down the new
number of configurations (1):

W =
∏

k

[
GVk + (1 − αkk)(NVk − 1) − GVk

∑k′ �=k
k′ αkk′NVk′

]
!

Ni!
[
GVk − 1 − αkk(NVk − 1) − GVk

∑k′ �=k
k′ αkk′NVk′

]
!
. (14)

But we note already that for large enough volumes Vk, both, GVk and NVk are large, therefore the
summations GVk

∑k′ �=k
k′ αkk′NVk′ , containing terms bilinear in these large quantities, must be

much larger than GVk and NVk . In conclusion, both square brackets in (14) should be negative.
This is not admissible. (We note in passing that also in the Haldane–Wu formalism (1)
[1, 19], negative terms may appear in the calculation of the number of configurations for
unappropriate choice of subspaces, even though in the summations there are only terms linear
in Ni .)

To solve the problem, we have to regard the exclusion statistics as acting on the
quasiparticle added as a perturbation to the equilibrium quasiparticle distribution. Therefore,
we assume that on top of the equilibrium distribution of particles, say NVk , we add a small
perturbation, δNVk , which changes the number of configurations into

W =
∏

k

[
G̃Vk + NVk + δNVk − 1 − ∑k′ �=k

k′ α̃kk′δNVk′
]
!

(NVk + δNVk)!
(
G̃Vk − 1 − ∑k′ �=k

k′ α̃kk′δNVk′
)
!

=
∏

k

[
G̃Vk + NVk + (1 − αkk)δNVk − 1 − G̃Vk

∑k′ �=k
k′ αkk′δNVk′

]
!

(NVk + δNVk)!
(
G̃Vk − αkkδNVk − 1 − G̃Vk

∑k′ �=k
k′ αkk′δNVk′

)
!
. (15)

Note that now G̃Vk is the Bose dimension of the Hilbert space, i.e. the number of available
states, and not its real dimension. So, unless we have an ideal Bose system, the ratio NVk/G̃Vk ,
denoted by ñk, is actually the ratio of the number of particles to the number of available
states (or holes). In terms of Gk of equation (1) or (14), G̃Vk = Gk − αNk. The equilibrium
distribution is then obtained by imposing that the partition function is stationary with respect
to the perturbations δNVk . If we introduce the notations, δñk ≡ δNVk/G̃Vk , using the Stirling
approximation, we write the logarithm of W as

ln W =
∑

k

G̃Vk

⎧⎨
⎩

⎡
⎣1 + ñk + (1 − αkk)δñk −

∑
k′(�=k)

αkk′G̃Vk′ δñk′

⎤
⎦

× ln

⎡
⎣1 + ñk + (1 − αkk)δñk −

∑
k′(�=k)

αkk′G̃Vk′ δñk′

⎤
⎦
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− (ñk + δñk) ln(ñk + δñk) −
⎛
⎝1 − αkkδñk − 1 −

∑
k′(�=k)

αkk′G̃Vk′ δñk′

⎞
⎠

× ln

⎛
⎝1 − αkkδñk − 1 −

∑
k′(�=k)

αkk′G̃k′δñk′

⎞
⎠

⎫⎬
⎭ . (16)

Adding β
∑

k G̃Vk ñk(µk −εk) to (16), we obtain the logarithm of the partition function, which,
if maximized, gives

0 = ∂

∂nk

[
ln W + β

∑
k′

G̃Vk′ ñk′(µk′ − εk′)

]

= G̃Vk

⎧⎨
⎩β(µk − εk) − ln ñk + (1 − αkk) ln(1 + ñk) −

∑
k′(�=k)

αk′kG̃Vk′ ln(1 + ñk′)

⎫⎬
⎭ . (17)

We observe now that if αkk′ = 0, for any k and k′, we obtain the Bose distribution,
ñk = nk = {exp[β(εk − µk) − 1]}−1, whereas if αkk′ = 0, for any k �= k′, and αkk = 1 for
any k, we obtain ñk = exp[β(µk − εk)], which is the ratio of the number of particles to the
number of holes in a Fermi system, as expected.

Now we can finally extract from (17) a self-consistent equation for nk:

β(µk − εk) + ln
[1 + ñk]1−αkk

ñk
=

∑
k′(�=k)

GVk′ ln[1 + ñk′]αk′k. (18)

In the thermodynamic limit, when GVk � ∑
k′(�=k) GVk′ , equation (18) gives a good,

unambiguous particle distribution in the system. The summation to the right-hand side
of equation (18) can be readily and consistently transformed into an integral when the
dimension of the system increases and we get the self-consistent integral equation for the
particle distribution,

β(µk − εk) + ln
[1 + ñk]1−αkk

ñk
=

∫
σk′ ln[1 + ñk′]αk′k dk′. (19)

In the end let us remark an identity. If all the mutual statistics parameters were zero, the
model introduced here should be identical to the previous FES model (section 2) so let us
compare the results. First, if αkk′ = 0 for all k �= k′, equation (18) reduces to

(1 + ñk)
1−αkk

ñk
= eβ(εk−µk), (20)

whereas equation (12) becomes

w
αkk
k

(1 + wk)αkk−1
= eβ(εk−µk). (21)

Now one can check easily that equation (20) is identical to equation (21), if ñk = w−1
k . But

on the other hand, by definition, w−1
k = Nk/(Gk − αkkNk) = Nk/G̃k ≡ ñk. Therefore, the

results are indeed identical and we observe with this occasion that in FES systems with no
mutual statistics, the quantity wk was the ratio between the Bose dimension of the subspace
Vk and the number of particles in this subspace.
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4. Conclusions

I showed that the fractional exclusion statistics leads to ambiguous thermodynamic results if
the mutual exclusion statistics parameters are not zero (αij �= 0, for i �= j ). To correct this
ambiguity and to obtain consistent thermodynamic results I introduced new mutual exclusion
statistics parameters, which are proportional to the dimension of the subspace on which they
act.

In a related publication [23] I proved that a gas of interacting particles can be described
as a fractional exclusion statistics gas, with the exclusion statistics parameters having the
properties obtained here.
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S N Ershov and A Pârvan, for hospitality. The work was partially supported by the NATO
grant, EAP.RIG 982080.

References

[1] Haldane F D M 1991 Phys. Rev. Lett. 67 937
[2] Tomonaga S 1950 Prog. Theor. Phys. 5 544
[3] Luttinger J M 1963 J. Math. Phys. 4 1154
[4] Mattis D C and Lieb E 1965 J. Math. Phys. 6 304
[5] Carmelo J M P, Horsch P, Ovchinnikov A A, Campbell D K, Castro Neto A H and Peres N M R 1998 Phys.

Rev. Lett. 81 489
[6] Colagero F 1969 J. Math. Phys., NY 10 2191
[7] Sutherland B 1971 J. Math. Phys., NY 12 247
[8] Sutherland B 1971 Phys. Rev. A 4 2019
[9] Sutherland B 1972 Phys. Rev. A 5 1372

[10] Murthy M V N and Shankar R 1999 Phys. Rev. B 60 6517
[11] de Veigy A D and Ouvry S 1994 Phys. Rev. Lett. 72 600
[12] Hansson T H, Leinaas J M and Viefers S 1996 Nucl. Phys. B 470 291
[13] Isakov S B and Viefers S 1997 Int. J. Mod. Phys. A 12 1895
[14] Murthy M V N and Shankar R 1994 Phys. Rev. Lett. 73 3331
[15] Sen D and Bhaduri R K 1995 Phys. Rev. Lett. 74 3912
[16] Bhaduri R K, Reimann S M, Viefers S, Choudhury A G and Srivastava M K 2000 J. Phys. B: At. Mol. Opt.

Phys. 33 3895–903
[17] Hansson T H, Leinaas J M and Viefers S 2001 Phys. Rev. Lett. 86 2930–3
[18] Isakov S B 1994 Phys. Rev. Lett. 73 2150
[19] Wu Y-S 1994 Phys. Rev. Lett. 73 922
[20] Iguchi K 1998 Phys. Rev. Lett. 80 1698
[21] Iguchi K 2000 Phys. Rev. B 61 12757
[22] Iguchi K and Sutherland B 2000 Phys. Rev. Lett. 85 2781
[23] Anghel D V 2007 Preprint 0710.0728

http://dx.doi.org/10.1103/PhysRevLett.67.937
http://dx.doi.org/10.1143/PTP.5.544
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1063/1.1704281
http://dx.doi.org/10.1103/PhysRevLett.81.489
http://dx.doi.org/10.1063/1.1664820
http://dx.doi.org/10.1103/PhysRevA.4.2019
http://dx.doi.org/10.1103/PhysRevA.5.1372
http://dx.doi.org/10.1103/PhysRevB.60.6517
http://dx.doi.org/10.1103/PhysRevLett.72.600
http://dx.doi.org/10.1016/0550-3213(96)00178-2
http://dx.doi.org/10.1142/S0217751X97001195
http://dx.doi.org/10.1103/PhysRevLett.73.3331
http://dx.doi.org/10.1103/PhysRevLett.74.3912
http://dx.doi.org/10.1088/0953-4075/33/19/304
http://dx.doi.org/10.1103/PhysRevLett.86.2930
http://dx.doi.org/10.1103/PhysRevLett.73.2150
http://dx.doi.org/10.1103/PhysRevLett.73.922
http://dx.doi.org/10.1103/PhysRevLett.80.1698
http://dx.doi.org/10.1103/PhysRevB.61.12757
http://dx.doi.org/10.1103/PhysRevLett.85.2781
http://www.arxiv.org/abs/0710.0728

	1. Introduction
	2. Thermodynamic inconsistencies in FES
	2.1. Large systems

	3. Correction of the parameters
	4. Conclusions
	Acknowledgments
	References

